A New Pseudo Sesquiterpenoid from the Seeds of Koelreuteria paniculata

Wen Han LIN*, Hai Ming LEI, Hong Zheng FU, Jun LI
National Research Laboratories of Natural and Biomimetic Drugs, Peking University, Beijing 100083

Abstract

From the seeds of medicinal plant Koelreuteria paniculata, a new pseudo sesquiterpenoid with novel skeleton namely paniculoid $\mathbf{1}$ was isolated. The structure of $\mathbf{1}$ was established on the basis of extensive 2D NMR spectroscopy in conjugation with MS and IR spectral analysis.

Keywords: Koelreuteria Paniculata, seeds, paniculoid, structural elucidation.

The species Koelreuteria paniculata Laxm (Sapindaceae) widely distributed in Northern China close to mountain area in Beijing suburb. The previous works ${ }^{1,2}$ reported that the plant possesses the activities for anti-tumour, anti-oxidation, antibiosis, and the seeds mainly contained flavonoids and galloyl derivatives and possesses the activity for insecticide. In the systematic study on the plant phytochemically, a new pseudo sesquiterpenoid with novel skeleton namely paniculoid $\mathbf{1}$ was isolated from the ethyl acetate extract of the seeds by using silica gel column chromatography. This report intended to describe its structural elucidation.

Paniculoid 1 was obtained as colorless amorphous powder. Its molecular formula $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{O}_{3}$ was proposed due to the molecular ion peak $m / z 246\left[\mathrm{M}^{+}\right]$in EIMS spectrum and the ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR spectra as well as DEPT data. The IR absorptions at 1742 and $1710 \mathrm{~cm}^{-1}$ suggested the presence of two carbonyl groups. The ${ }^{13} \mathrm{C}$ NMR and DEPT spectra displayed two methyl groups ($\delta_{\mathrm{C}} 15.42,16.72$); five methylene groups ($\delta_{\mathrm{C}} 21.57$, $29.00,30.68,31.32$, and 32.71); two methine groups ($\delta_{\mathrm{C}} 43.34$ and 138.34); as well as six quaternary carbons ($\delta_{\mathrm{C}} 46.38,121.59,130.10,158.55,167.72$ and 170.92). ${ }^{1} \mathrm{H}$ NMR spectrum showed two methyl groups at $\delta 0.80(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J}=6.6 \mathrm{~Hz})$ and $1.81(\mathrm{~s}, 3 \mathrm{H})$; one olefinic proton at $\delta_{\mathrm{H}} 6.90$ (brs), and the signals of remained protons overlapped around $0.84-2.68 \mathrm{ppm}$. In HMBC spectrum, methyl protons $\delta_{\mathrm{H}} 1.81$ (s) correlated with carbonyl carbon $\delta_{\mathrm{C}} 170.92$ (C-3), olefinic carbons $\delta_{\mathrm{C}} 158.55$ (C-5) and 121.59 (C-4); olefinic proton $\delta_{\mathrm{H}} 6.90$ (brs, H-9) correlated with carbonyl carbon $\delta_{\mathrm{C}} 167.72$ (C-1), 158.55 (C-5), 46.38 (C-7) and 21.57 (C-8). Moreover, the HMBC spectrum showed the correlations of methylene protons at C-6 ($\delta 2.68$, d, J=17.0 Hz; 2.46,d, J=17.0 Hz) with $\mathrm{C}-4, \mathrm{C}-5, \mathrm{C}-7$ and $\mathrm{C}-11\left(\delta_{\mathrm{C}} 43.34\right)$; and methylene protons at $\mathrm{C}-8\left(\delta_{\mathrm{H}} 2.45, \mathrm{~d}, \mathrm{~J}=16.5 \mathrm{~Hz}\right.$, 2.23 , brd, $\mathrm{J}=16.5 \mathrm{~Hz}$) with $\delta 138.34(\mathrm{~d}, \mathrm{C}-9), 130.10(\mathrm{~s}, \mathrm{C}-10), \mathrm{C}-7$ and $\mathrm{C}-11$. These results led to conclude a 4 -methyl-7, 8 -dihydroisochromene-1,3-dione subunit. In 2D TOCSY spectrum, the proton correlations generated from methyl protons $\delta_{\mathrm{H}} 0.80$ (d,
$\mathrm{J}=6.6 \mathrm{~Hz}, \mathrm{H}-15)$ to $\mathrm{H}-11(\delta 1.82, \mathrm{~m}), \mathrm{H}-12(\delta 1.18, \mathrm{~m} ; 1.23, \mathrm{~m}), \mathrm{H}-13(\delta 2.00, \mathrm{~m} ; 1.72, \mathrm{~m})$, $\mathrm{H}-14(\delta 2.10, \mathrm{~m} ; 1.52, \mathrm{~m})$, in association with HMBC correlations of $\mathrm{H}-11, \mathrm{H}-12, \mathrm{H}-13$, $\mathrm{H}-14$ as well as $\mathrm{H}-15$ with $\mathrm{C}-7$, indicating a five membered spiral ring at $\mathrm{C}-7$, and the methyl group $\mathrm{CH}_{3}-15$ was deduced at $\mathrm{C}-11$ due to the long range correlations of $\mathrm{H}-15$ with $\mathrm{C}-7, \mathrm{C}-11$ and $\mathrm{C}-12$. Therefore, the entire structure was determined as showed in Figure 1. The stereochemistry of $\mathbf{1}$ was proposed due to the NOESY spectrum. The NOE correlation of Me-15 with $\mathrm{H}-8 \alpha\left(\delta_{\mathrm{H}} 2.23\right)$ and $\mathrm{H}-9$ implied that Me-15 was spatial close to $\mathrm{H}-8 \alpha$ and $\mathrm{H}-9$. The NOE evidence in association with Dreding structure modeling supposed that the Me-15 was in β-configuration and $\mathrm{C}-7$ was in R configuration. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data showed in Table 1

Figure 1 The proposed structure and main NOE correlations of compounds 1

Table $1{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Data of Compound 1

Position	δ_{C}	δ_{H}	$\mathrm{HMBC}(\mathrm{H} \rightarrow \mathrm{C})$
1	$167.72, \mathrm{~s}$		
3	$170.92, \mathrm{~s}$		
4	$121.59, \mathrm{~s}$		
5	$158.55, \mathrm{~s}$		
6	$30.68, \mathrm{t}$	$2.68(6 \alpha), \mathrm{d}, 17.0 ;$	$2.46(6 \beta)$,
7	$46.38, \mathrm{~s}$	$\mathrm{~d}, 17.0$	$\mathrm{C}-4, \mathrm{C}-5, \mathrm{C}-7, \mathrm{C}-8, \mathrm{C}-10, \mathrm{C}-11, \mathrm{C}-14$
8	$21.57, \mathrm{t}$		
9	$138.34, \mathrm{~d}$	$2.45(8 \beta), \mathrm{d}, 16.5 ;$	$2.23(8 \alpha)$,
10	$130.10, \mathrm{~s}$	brd, 16.5	$\mathrm{C}-6, \mathrm{C}-7, \mathrm{C}-9, \mathrm{C}-10, \mathrm{C}-11, \mathrm{C}-14$
11	$43.34, \mathrm{~d}$	$6.90, \mathrm{brs}$	$\mathrm{C}-1, \mathrm{C}-5, \mathrm{C}-7, \mathrm{C}-8, \mathrm{C}-10$,
12	$31.32, \mathrm{t}$		
13	$29.00, \mathrm{t}$	$1.82, \mathrm{~m}$	$\mathrm{C}-6, \mathrm{C}-7, \mathrm{C}-8, \mathrm{C}-11, \mathrm{C}-12, \mathrm{C}-13, \mathrm{C}-14, \mathrm{C}-15$
14	$32.71, \mathrm{t}$	$1.18, \mathrm{~m} ; \quad 1.23, \mathrm{~m}$	$\mathrm{C}-7, \mathrm{C}-11, \mathrm{C}-13, \mathrm{C}-14, \mathrm{C}-15$
15	$16.72, \mathrm{q}$	$1.72, \mathrm{~m} ; 2.00, \mathrm{~m}$	$\mathrm{C}-7, \mathrm{C}-11, \mathrm{C}-12, \mathrm{C}-14$
16	$15.42, \mathrm{q}$	$1.52, \mathrm{~m} ; 2.10, \mathrm{~m}$	$\mathrm{C}-6, \mathrm{C}-7, \mathrm{C}-8, \mathrm{C}-11, \mathrm{C}-12, \mathrm{C}-13$
		$0.80, \mathrm{~d}, 6.6,1.81, \mathrm{~s}$	$\mathrm{C}-7, \mathrm{C}-11, \mathrm{C}-12$
		$\mathrm{C}-3, \mathrm{C}-4, \mathrm{C}-5$	

in DMSO-d6

Acknowledgment

This project is supported by the National Natural Science Foundation of China (No.29732040).

References

1. X.F.Yang, H.M.Lei, H.Z.Fu, G.E.Ma, W.H. Lin, Acata Pharm. Sin., 2000,35 (4), 279.
2. X.F.Yang, H.M.Lei, H.Z.Fu, G.E.Ma, W.H. Lin, Acata Pharm. Sin., 1999,34 (6), 457.

Received 22 January, 2002

